General transient solution of the one-step master equation in one dimension.

نویسندگان

  • Stephen Smith
  • Vahid Shahrezaei
چکیده

Exact analytical solutions of the master equation are limited to special cases and exact numerical methods are inefficient. Even the generic one-dimensional, one-step master equation has evaded exact solution, aside from the steady-state case. This type of master equation describes the dynamics of a continuous-time Markov process whose range consists of positive integers and whose transitions are allowed only between adjacent sites. The solution of any master equation can be written as the exponential of a (typically huge) matrix, which requires the calculation of the eigenvalues and eigenvectors of the matrix. Here we propose a linear algebraic method for simplifying this exponential for the general one-dimensional, one-step process. In particular, we prove that the calculation of the eigenvectors is actually not necessary for the computation of exponential, thereby we dramatically cut the time of this calculation. We apply our new methodology to examples from birth-death processes and biochemical networks. We show that the computational time is significantly reduced compared to existing methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-Dimensional Transient Thermal and Mechanical Stresses in FGM Hollow Cylinder with Piezoelectric Layers

In this paper, an analytical method is developed to obtain the solution for the one dimensional transient thermal and mechanical stresses in a hollow cylinder made of functionally graded material (FGM) and piezoelectric layers. The FGM properties are assumed to depend on the variable r and they are expressed as power functions of r but the Poisson’s ratio is assumed to be constant. Transient te...

متن کامل

P-stability‎, ‎TF and VSDPL technique in Obrechkoff methods for the numerical solution of the Schrodinger equation

Many simulation algorithms (chemical reaction systems, differential systems arising from the modeling of transient behavior in the process industries and etc.) contain the numerical solution of systems of differential equations. For the efficient solution of the above mentioned problems, linear multistep methods or Runge-Kutta technique are used. For the simulation of chemical procedures the ra...

متن کامل

NUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE

This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...

متن کامل

Three-Step Master Equation: Parametric Stationary Solution

In general, the three-step population master equation is used by physicists in many studies of diffusion processes of microscopic particles on one-dimensional lattices [1], but this simple discrete equation has extensive and interesting applications in other fields as well, most recently to Hubbell’s neutral theory in ecology [2]. In the following, we shall use a population interpretation. It r...

متن کامل

Numerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact ‎solution

The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 91 6  شماره 

صفحات  -

تاریخ انتشار 2015